

IoPクラウド(SAWACHI)に蓄積された データの分析-シシトウの果実肥大と 外日射量との関係-

表 外日射量と AL 品率、AM 品率、総出荷量との相関係数

生産者	外日射量との相関係数		
	AL品率	AM品率	総出荷量
生産者1	0.611	-0. 608	0. 713
生産者2	0. 550	-0. 286	0. 273
生産者3	0.062	-0. 353	0. 431
生産者4	0. 655	-0. 486	0. 130
生産者5	0. 236	-0. 350	0. 437
生産者6	0. 676	-0. 388	-0. 316
生産者7	-0. 244	-0. 427	0. 681
生産者8	-0. 160	-0. 525	0. 711
生産者9	0. 728	-0. 801	-0. 121
生産者10	-0. 379	-0. 104	0. 784
生産者11	-0. 309	-0. 498	0. 144
生産者12	0.604	-0. 580	0. 508
生産者13	-0. 390	-0. 062	0. 226
生産者14	0. 740	-0. 749	0. 636
生産者15	-0. 267	-0. 771	-0. 489
生産者16	0. 623	-0. 621	0. 695
生産者17	0.608	-0. 469	0. 707
生産者18	0. 779	-0. 317	0. 144
生産者19	0. 259	-0. 534	0. 141
生産者20	0. 340	-0. 586	0. 544
生産者21	0. 693	-0. 316	-0. 209
生産者22	0. 131	-0. 664	-0. 161

注) 調査対象期間:2023年12月3日~2024年7月20日。

総出荷量は7日間合計出荷量、AL品率およびAM品率は7日間合計出荷量から算出した値を用いた。

外日射量は収穫の前日から5日前までの積算外日射量の7日間合計値を用いた。

農業データ収集基盤IoPクラウド(SAWACH I)には、約3,000件の生産者から提供されたJA出荷量データが蓄積されています。

今回、これらのうち、シシトウ生産者データの22件を対象に等階級別出荷量と収穫の前日から5日前までの積算外日射量との関係を分析しました。

その結果、約半数の生産者で外日射量とAL品率および総出荷量との間に正の相関、外日射量とAM品率との間に負の相関が見られました(表)。このことから、収穫前日から5日前までの外日射量が多いと果実の肥大が促進され、AL品率が増加する可能性が示唆されました。

続いて、外日射量とAL品率、AM品率、総

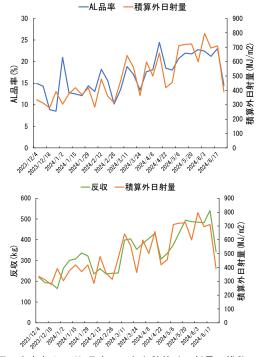


図 生産者1のAL品率・反収と積算外日射量の推移

注)調査対象期間:2023年12月3日~2024年6月30日。 反収は7日間合計値、AL品率は7日間合計出荷量から算出した値 を用いた。

外日射量は収穫の前日から5日前までの積算外日射量の7日間合計 値を用いた。

出荷量の3項目において高い相関が見られた生産者1のAL品率と外日射量、反収と外日射量の推移を比較すると、増減の傾向がおおむね一致していることが確認できました(図)。

今後はハウス内環境データなど、より詳細なデータを用いた果実肥大の分析を行います。

本研究は、内閣府地方大学・地域産業創生交付金「"IoP(Internet of Plants)"が導く「Next次世代型施設園芸農業」への進化」の助成を受けたものです。

(農業情報研究室 筒井 真璃菜 TEL 088-863-4920)