
単為結果性品種 'PC お竜' の生育・収量特性

夷1	盟花.	善里 🗗	(様相お)	kび平均果重 ^z
4V I	1 711 117	ᄱᅑ	7 TXK TH (1.) C	トいておえも

	24: NO 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
品種 ^y	開花数	収穫果数	可販果数	収穫果率 ^x	可販果率 ^w	平均果重 ^v		
	(個/m²)	(個/ m ²)	(個/㎡)	(%)	(%)	(%)		
PCお竜	253.7	250. 7	245. 2	98.9	97.8	97. 0		
土佐鷹	362.6	292. 2	271. 1	80. 4	92.6	90. 4		
百分率 ^u	70	86	90	123	106	107		

- ² 養液栽培で、うね幅150cm、株間30cm、1条植え2本V字仕立てとし、1芽切り戻しで栽培した。栽培期間中に収穫または落花した全花を調査し、収穫した果実はJA高知県出荷規格によりA品とB品を可販果とした
- y 台木にエンペラドールを使用した x 収穫果数/開花数 ▼ 可販果数/収穫果数
- v 可販果として収穫した全果実の平均 "'土佐鷹'を100とした場合の'PCお竜'の割合

高知県の主要品目であるナスでは、単為結果性品種 'PCお竜' が急速に普及していますが、その品種特性についてはこれまで明らかにされていません。そこで、 'PCお竜' の生育・収量特性を調査しました。

'PCお竜'は'土佐鷹'に比べて、開花数は30%減と著しく少なかったものの、収穫果率は98.9%と極めて高く、可販果数は10%減に留まりました。また、収穫所要日数は作期を通じ1.7~5.3日短く、果実肥大性に優れていることが明らかになりました(表1、図1)。一方で、開花数が少ないことから、着果数の谷の期間が長引く傾向が見られ、12月~3月頃にかけて月別の収量の山

谷が大きくなる傾向が見られました(図1、2)。 'PCお竜'は、わき芽の吹きが遅いため、1芽切り戻しで栽培した場合には、収量の山谷が大きくなったと考えられます。そのため、厳寒期に2芽切り戻しを行い、側枝を増やして着果・収量を安定させる試みを行っている生産者もいます。

今後は、作業負担が過度に増えず、安定 生産につながる、整枝方法を検討する予定 です。

> (先端生産システム担当 永尾航洋 TEL:088-863-4918)