非辛みシシトウの夜間温度管理の違いが収量・ 品質に及ぼす影響

表1 ハウス内平均温度の推移(9月~6月)

Next 次世代 Internet of Plants

表 2 A 品率、AM 率 (9 月~6 月)

平均温度										
	夜間		日中		24時間					
•	慣行	低夜温	慣行	低夜温	慣行	低夜温				
9月-11月	22.6	21.7	26. 4	26. 2	24. 5	23. 9				
12月- 2月	21.2	18.3	24. 7	24. 1	23.0	21. 2				
3月-6月	21.7	20.0	26.6	26.5	24. 1	23. 1				

	15号		16号		スリム	
	慣行	低夜温	慣行	低夜温	慣行	低夜温
A品率(%)	88. 3	86. 9	86. 9	84. 2	87. 8	82.0
AM率(%)	72. 4	74. 3	74. 4	76. 4	81.9	84. 0

注) A 品率=A 品/(A 品+マル A 品) ×100 AM 率=AM/(AM+AL) ×100

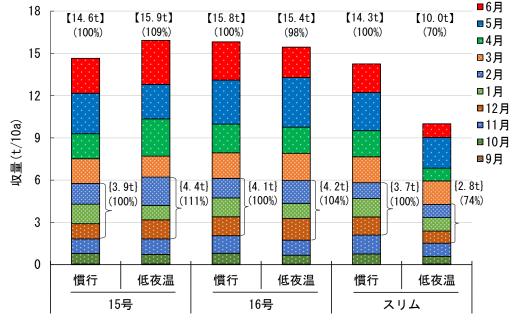


図 月別収量(収穫期間 2022 年 9 月 16 日~2023 年 6 月 30 日) 注)【】は6月末までの合計、()は慣行に対する比率、{}は12月~2月の合計

高知県の主要園芸品目であるシシトウにおいて、辛み果の発生しない品種(高育交シシ15号、高育交シシ16号、以下15号、16号)を育成しました。高温作物であるシシトウは近年の燃料費高騰の影響が大きく、加温経費の削減が望まれていました。そこで今回、この2品種および従来品種(土佐じしスリム、以下スリム)について夜間の温度管理を違えた場合の収量・品質を調査しました。

 $12\sim2$ 月の夜温設定を18℃とした低夜温区での夜間平均温度は慣行区の21.2℃に対し18.3℃と2.9℃低く推移しました(表1)。

低夜温区では慣行区に比べて全期間の収量はスリムが70%となったのに対し、15号、

16号は同等~やや多くなりました (図)。 また品質面に大きな違いはみられませんで した(表2)。

以上の結果から、15号、16号は夜間平均 温度を慣行より低い18℃で管理しても同等 の収量、品質が維持でき、加温経費の削減 が期待されます。

本研究は、内閣府地方大学・地域産業創生交付金「"IoP(Internet of Plants)"が導く「Next次世代型施設園芸農業」への進化」の助成を受けたものです。

(先端生産システム担当 橋本 明広 088-863-4918)